37 research outputs found

    The Neural Substrates of Subjective Time Dilation

    Get PDF
    An object moving towards an observer is subjectively perceived as longer in duration than the same object that is static or moving away. This ”time dilation effect” has been shown for a number of stimuli that differ from standard events along different feature dimensions (e.g. color, size, and dynamics). We performed an event-related functional magnetic resonance imaging (fMRI) study, while subjects viewed a stream of five visual events, all of which were static and of identical duration except the fourth one, which was a deviant target consisting of either a looming or a receding disc. The duration of the target was systematically varied and participants judged whether the target was shorter or longer than all other events. A time dilation effect was observed only for looming targets. Relative to the static standards, the looming as well as the receding targets induced increased activation of the anterior insula and anterior cingulate cortices (the ”core control network”). The decisive contrast between looming and receding targets representing the time dilation effect showed strong asymmetric activation and, specifically, activation of cortical midline structures (the ”default network”). These results provide the first evidence that the illusion of temporal dilation is due to activation of areas that are important for cognitive control and subjective awareness. The involvement of midline structures in the temporal dilation illusion is interpreted as evidence that time perception is related to self-referential processing

    A volumetric comparison of the insular cortex and its subregions in primates

    Get PDF
    The neuronal composition of the insula in primates displays a gradient, transitioning from granular neocortex in the posterior-dorsal insula to agranular neocortex in the anterior-ventral insula with an intermediate zone of dysgranularity. Additionally, apes and humans exhibit a distinctive subdomain in the agranular insula, the frontoinsular cortex (FI), defined by the presence of clusters of von Economo neurons (VENs). Studies in humans indicate that the ventral anterior insula, including agranular insular cortex and FI, is involved in social awareness, and that the posterodorsal insula, including granular and dysgranular cortices, produces an internal representation of the body's homeostatic state. We examined the volumes of these cytoarchitectural areas of insular cortex in 30 primate species, including the volume of FI in apes and humans. Results indicate that the whole insula scales hyperallometrically (exponent = 1.13) relative to total brain mass, and the agranular insula (including FI) scales against total brain mass with even greater positive allometry (exponent = 1.23), providing a potential neural basis for enhancement of social cognition in association with increased brain size. The relative volumes of the subdivisions of the insular cortex, after controlling for total brain volume, are not correlated with species typical social group size. Although its size is predicted by primate-wide allometric scaling patterns, we found that the absolute volume of the left and right agranular insula and left FI are among the most differentially expanded of the human cerebral cortex compared to our closest living relative, the chimpanzee

    Damage to insula abolishes cognitive distortions during simulated gambling.

    Get PDF
    This is the accepted version of an article originally published in PNAS. The version of record is available at http://www.pnas.org/content/early/2014/04/02/1322295111.Gambling is a naturalistic example of risky decision-making. During gambling, players typically display an array of cognitive biases that create a distorted expectancy of winning. This study investigated brain regions underpinning gambling-related cognitive distortions, contrasting patients with focal brain lesions to the ventromedial prefrontal cortex (vmPFC), insula, or amygdala ("target patients") against healthy comparison participants and lesion comparison patients (i.e., with lesions that spare the target regions). A slot machine task was used to deliver near-miss outcomes (i.e., nonwins that fall spatially close to a jackpot), and a roulette game was used to examine the gambler's fallacy (color decisions following outcome runs). Comparison groups displayed a heightened motivation to play following near misses (compared with full misses), and manifested a classic gambler's fallacy effect. Both effects were also observed in patients with vmPFC and amygdala damage, but were absent in patients with insula damage. Our findings indicate that the distorted cognitive processing of near-miss outcomes and event sequences may be ordinarily supported by the recruitment of the insula. Interventions to reduce insula reactivity could show promise in the treatment of disordered gambling.LC was supported by a grant from the Medical Research Council (UK) (G1100554). BS was supported by a PhD studentship from the Medical Research Council. AB and DT, as well as the lesion patient research, were supported by grants from the National Institute of Health, namely the National Institute of Neurological Disorders and Stroke [P01 NS19632], and by the National Institute on Drug Abuse [R01 DA023051, R01 DA022549]

    The Relationship between Amygdala Activation and Passive Exposure Time to an Aversive Cue during a Continuous Performance Task

    Get PDF
    The allocation of attention modulates negative emotional processing in the amygdala. However, the role of passive exposure time to emotional signals in the modulation of amygdala activity during active task performance has not been examined. In two functional Magnetic Resonance Imaging (fMRI) experiments conducted in two different groups of healthy human subjects, we examined activation in the amygdala due to cued anticipation of painful stimuli while subjects performed a simple continuous performance task (CPT) with either a fixed or a parametrically varied trial duration. In the first experiment (N = 16), engagement in the CPT during a task with fixed trial duration produced the expected attenuation of amygdala activation, but close analysis suggested that the attenuation occurred during the period of active engagement in CPT, and that amygdala activity increased proportionately during the remainder of each trial, when subjects were passively exposed to the pain cue. In the second experiment (N = 12), the duration of each trial was parametrically varied, and we found that amygdala activation was linearly related to the time of passive exposure to the anticipatory cue. We suggest that amygdala activation during negative anticipatory processing depends directly on the passive exposure time to the negative cue

    Ten years of Nature Reviews Neuroscience: insights from the highly cited

    Full text link

    Vagal Input to Lateral Area 3a in Cat Cortex

    No full text

    Why a soft touch can hurt

    No full text
    corecore